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P21.15.  Strategize:  We will use what we know about the potential due to point charges. The potential due to the 
point charges is just the sum of the potentials due to each charge individually. 
Prepare:  Let the distance between the two charges be called 2 .r  Then the distance from the observation point 
midway between the charges to either charge is r.  The potential near a charged particle is given by  
Equation 21.11: / .V KQ r  
 

 
 

Solve:  The total potential midway between the charges is equal to the sum of the potential of either charge by itself.  
Thus we have: 

2
300V 150V

KQ KQ KQ KQ

r r r r
      

We don’t know Q  or r  but this ratio of KQ  and r  is all we need to solve the problem.  Since the total distance 

between the charges is 2 ,r  a point 25% of the way from one particle to the other  is a distance / 2r  from the closer 
particle and a distance 3 / 2r  from the farther particle.  Thus the potential at such a point is: 

8 8
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/ 2 3 / 2 3 3
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V

r r r
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 

 

Assess:  Going from the midpoint of the two charges to a point closer to one of them increases the potential.  This 
means that we would have to do work to move a positive test charge from the midpoint toward one of the charges.  
This makes sense considering that very close to either charge, the field is strong and a positive test charge placed 
there would experience a strong repulsive force. 

 

P21.16.  Strategize:  We will use the relationship between the electric field, distance, and potential difference for 
the first part. For the second, we will use the definition of capacitance, which is the charge per that can be held by a 
device per unit of potential difference applied to the device. We will also calculate the capacitance using its 
geometry. 
Prepare:  The electric potential difference between the plates is determined by the uniform electric field in the 
parallel-plate capacitor and is given by Equation 21.6. 
Solve:  (a)  The potential difference CV  across a capacitor of spacing d is related to the electric field inside by 

Equation 21.6: 
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5C
C (1.0 10 V/m)(0.002 m) 200 V

V
E V Ed

d


        

(b)  The electric field of a capacitor is related to the charge by Equation 20.7: 

12 2 2 4 2 5 10
0 (8.85 10 C /(N m ))(4.0 10 m )(1.0 10 V/m) 3.5 10 CQ AE          ò  

Assess:  A charge of 0.35 nC on the positive plate and an equal negative charge on the negative plate create a 
significant potential difference across the parallel. 
 

P21.17.  Strategize:  We know how to relate the potential difference to the electric field in a capacitor. We also 
know an expression for the electric field between two charged plates in terms of the charge density. We can combine 
to solve for the potential difference. 
Prepare:  The electric potential between the plates of a parallel plate capacitor is determined by the uniform electric 
field between the plates by Equation 21.6. 
Solve:  (a)  Using Equations 21.6 and 20.7, the potential difference across the plates of a capacitor is  

9 3

C 4 2 12 2 2
0 0

( / ) (0.708 10 C)(1.0 10 m)
200 V

(4.0 10 m )(8.85 10 C / (N m )

Q A Qd
V Ed d

A

 

 

 
     

  ò ò
 

Then the electric field is 3 5
C / (200V)/(1.0 10 m) 2.0 10 N/C.V d        

(b) For 2.0 mm,d   C 400 VV   and the electric field is 3 5
C / (400V)/(2.0 10 m) 2.0 10 N/C.V d        

Assess:  These answers make sense: We know that the electric field inside a parallel plate capacitor with a fixed 
charge does not depend on the plate separation. 
 

P21.18.  Strategize:  Consider which types of charge cause a positive or large potential, and which types of charge 
cause a negative potential, or reduce the potential. Given potential difference and distance we can determine the 
electric field. For the last part, we relate potential and electric potential energy using the charge of the proton. 
Prepare:  The electric field inside a parallel-place capacitor is determined by the potential difference between the 
plates given by Equation 21.7. The proton’s potential energy inside the capacitor is also determined by the 
capacitor’s potential difference. 
Solve:  (a)  Because the right plate is at a higher potential compared with the left plate, the positive plate is on the 
right and has a potential of 300 V. 
(b)  The electric field strength inside the capacitor is 

5C
3

300 V 0 V
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V
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d 

 
   

  

(c)  The potential energy of a charge q is .U q V   A proton on the left plate will have zero potential energy. A 

proton at the midpoint of the capacitor is at a potential of 150 V. Thus, its potential energy is 

19 17(1.6 10 C)(150 V) 2.4 10 JU       

Assess:  Because the right plate is at a higher potential compared with the left plate, the proton’s potential energy at 
midpoint was expected to be positive. 

P21.19.  Strategize:  This problem involves the concept of equipotential lines. 
Prepare:   The charge is a point charge. We will use Equations 21.10 and 21.1 to calculate the potential at each 
point. 

Solve: The potentials are given by 
  9 9 2 2

A B

2.0 10  C 8.99 10 N m /C
1800 V

0.01 m

Kq
V V

r

  
    . 

For point C, 0.02 mr   and C 900 V.V  The potential differences are 

AB B A BC C B1800 V 1800 V 0 V 900 V 1800 V= 900 VV V V V V V             

Assess:  Clearly A BV V  and CV  and A ,V so, as expected, AB 0V   and BCV  is negative. 
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P21.21.  Strategize: The potential due to many point charges is just the sum of the potential due to each. 
Prepare:   The potential is given by Equation 21.10. 
Solve:  The potential at the dot is 

9 9 9
9 2 21 2 3

0 1 0 2 0 3

1 1 1 2.0 10 C 2.0 10 C 2.0 10 C
(9.0 10 N m /C ) 1400 V

4 4 4 0.040 m 0.050 m 0.030 m

q q q
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r r r  

     
          

 ò ò ò
 

Assess:  Potential is a scalar quantity, so we found the net potential by adding three scalar quantities. 
 
 
P21.27.  Strategize:  We know the electric field points from regions of higher potential to regions of lower 
potential. We also know the relationship between the electric field strength, the potential difference, and distance. 
Prepare:  In a region that has a uniform electric field, Equation 21.17 gives the magnitude of the potential difference 
between two points. 
Solve:   (a) The electric field points “downhill.” So, point A is at a higher potential than point B. 
(b)  The magnitude of the potential difference between points A and B is 

(1000 V/m)(0.07 m) 70 VxV E d     

That is, the potential at point A is 70 V higher than the potential at point B. 
Assess:  Electric field points from higher potential to lower potential. 

P21.29.  Strategize:  We can use Equation 21.17 to determine the magnitude of the potential difference. The sign is 
given by considering that electric fields point from higher potentials to lower ones. 
Prepare:  In order to use Equation 21.17, / ,E V d   we need to know the shortest distance between two 
equipotential surfaces. We are given the distance between point A which is on one surface and point B which is on 
another surface. However this is not the shortest distance, as you can see from the figure. The shortest distance, ,d  is 

given by (5.0 cm) cos 30 2.5 3 cm.d     
 

 
 

Solve:  Since the electric field vectors point from the surface containing A to the surface containing B, A is at a 
higher potential and A BV V  will be a positive potential difference.  From Equation 21.17, the potential difference is 

given by: 

2
A B (1200V/m)(2.5 3 10 m) 52VV V Ed       

Given that A 300 V,V    we conclude that B 352V.V    
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Assess:  Even though the electric field vectors do not point directly from point A to point B, the potential is less at B 
than at A because the displacement vector from A to B forms an acute angle, 30 ,  with the electric field. That means 
that to get from A to B, one component of your motion must be in the direction of the field. 

P21.60.  Strategize:  We calculate the potential energy at the two points using Equation 21.10, and take the 
difference. 
Prepare:  The fixed 25.0 nC point charge creates a potential at point A and a different value at point B. We’ll first 
use Equation 21.10 to calculate the potential difference due to the 25.0 nC point charge between points A and B. 

q
V K

r
  

where 25.0 nCq   and A 0 050 mr   and B 0 015 m.r    

Then we’ll use elec .U q V    

Solve:   
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B A B B
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1 1
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q q
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 
       

 
 

         

 

Now we move the 3 0 nC charge from point A to B.  

5 5
elec AB AB( ) (3 0 nC)(10500 V) 3 15 10 J 3 2 10 JU q V              

Assess:  It doesn’t really matter that the line from the 25.0 nC charge to point A is at a right angle with the line to 
point B; they could all be colinear (or any other angle) and we’d still get the same answer. 

P21.64.  Strategize:  We can write an expression for the sum of the two charges, and for the product of the two 
charges (using Equation 21.9). We can solve the system of two equations for the two unknown charges. 
Prepare:  Let the unknown charges be 1Q  and 2 ,Q  then 9

1 2 30 10 C.Q Q     Equation 21.9 for the electric 

potential energy reads 1 2

12

QQ
U K

r
  or 1 2

0 12

1

4

QQ
U

r



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Solve:   

6 2
6 16 21 2 1 2

1 22 9 2 2
0 12 0

1 1 (180 10 J)(2.0 10 m)
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QQ QQ
U QQ

r

 
 



  
         

   
 

Solving the first equation for 2Q and substituting into the second equation, 

9 16 2 2 9 16 2
1 1 1 1

9 9 2 16 2

1 1

(30 10 C ) 4.0 10 C (30 10 C) (4.0 10 C ) 0

(30 10 C) ( 30 10 C) 4(4.0 10 C )
40 nC and 10 nC

2

Q Q Q Q

Q Q

   

  

          

     
     

 

That is, the two charges are 10 nC  and 40 nC. 

Assess:  As they must, the two charges when added yield a total charge of 30 nC, and when substituted into the 
potential energy equation yield 6180 10 J.U     

P21.66.  Strategize:  Let us symbolically write the potential from each of the given charges at an unknown location. 
Then we require that the sum of the two potential contributions be zero, and solve for the location. 
Prepare:  The net potential is the sum of the scalar potentials due to each charge. Let the point on the y-axis where 
the electric potential is zero be at a distance y from the origin. At this point, 1 2 0 V.V V   

 

P21.71.  Strategize:  The net potential at the dot is the sum of the potentials due to each charge. 
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Prepare:   The dot is equidistant from the three charges. We will denote the 2 nC charge as 1, left 1 nC  charge as 

2, and the right 1 nC  charge as 3. From the geometry in the figure, 

1 2 3
1 2 3

1.5 cm 1.5 cm 1.5 cm 1.5 cm
cos 30 1.732 cm

cos 30
r r r

r r r
       


 

Solve:  The potential at the dot is 

9 9 9
9 2 21 2 3

0 1 0 2 0 3

1 1 1 2.0 10 C 1.0 10 C 1.0 10 C
(9.0 10 N m /C )  0.0 V

4 4 4 0.01732 m 0.01732 m 0.01732 m

q q q
V

r r r  

     
         

 ò ò ò
 

Assess:  Potential is a scalar quantity, so we found the net potential by adding three scalar quantities. 
 
 

 
 

Solve:  Using Equation 21.10, 

9 9
1 2

2 2 2 2
0 2 2

2 2 2 2 2 2 2 2

2 2
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0 V 0
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q q

r r y y

y y y y
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     
     

   

        

    



 

Assess:  In comparison to separation between the charges, these values seem reasonable. 

P21.74.  Strategize:  Let us assume no forces other than electric forces act on the proton. Then the lost electric 
potential energy is accounted for by an increase in kinetic energy. 
Prepare:   Because the small positive charge moves farther away from the large negative charge the electric potential 
energy increases.  The kinetic energy of the small charge decreases by the same amount. 
Solve:   Use conservation of energy. 

i i f f

2
f i i f i 1 2

0 i f

27 6 2 9 2 2 19

15

1 1 1 1
( )

2 4

1 1 1
     = (1.67 10 kg)(1.9 10 m/s) (9.0 10 N m /C )( 10 nC)(1.6 10 C)

2 3 mm 4 mm

     = 1.81 10  J

K U K U

K K U U mv QQ
r r

 



   

 
      

 
         
 



ò
 

Now solve for the final speed. 

15
6f

f 27

2 2(1.81 10 J)
1.5 10 m/s

1.67 10 kg

K
v

m






   


  

Assess:  We expected the new speed to be smaller than the old speed, but in the same ballpark, and it is. 
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P21.75.  Strategize:  Assuming the system of the proton and the plates is isolated, the total energy will be 
conserved. We can find the change in kinetic energy by finding the change in electric potential energy. 
Prepare:  The proton will be attracted to the upper, negative plate and repelled by the lower positive plate.  
Since it is fired in halfway between the plates, by the time it hits the upper plate it will have moved through a 
potential difference of 2500 V,V   so it will have gained 2500 eV of kinetic energy. We convert eV to J: 

162500 eV 4.0 10  J.   
Solve:   Use an energy equation. 

2 27 5 2 16 161 1
f i i2 2 (1.67 10  kg)(3.0 10  m/s) 4.0 10  J 4.75 10  JK K K mv K                 

 Now solve for the final speed. 

16
5f

f 27

2 2(4.75 10 J)
7.5 10 m/s

1.67 10 kg

K
v

m






   


  

Assess: We expected the final speed to be greater than the initial speed, but in the same ballpark, and it is. 
 
 

P21.78.  Strategize:  We can determine the voltage from the electric field and plate spacing using Equation 21.6. 
For the second part the capacitance can be determined from the given geometry, and the capacitance and voltage 
determine the charge on the plates. For the final part, we’ll use conservation of energy. 
Prepare:  The electron has charge ,q e   and its potential energy at a point where the capacitor’s potential is V is 

.U eV   Since the electron is launched from the negative (lower potential) plate toward the positive (higher 
potential) plate, its potential energy becomes more negative (because of the negative sign of the electron charge). 
That is, the potential energy decreases, which must lead to an increase in the kinetic energy. Conversely, the 
electron’s speed as it is launched is smaller than 72.0 10 m/s.  Energy is conserved. The electron’s potential energy 

inside the capacitor can be found from the capacitor’s electric potential. 
Solve:   (a)  From Equation 21.6, the voltage across the capacitor is 

5 3
C (5.0 10 V/m)(2.0 10 m) 1000 VV Ed        

(b)  Because / ,CE V d   ,CQ C V   and 0 / ,C A d ò  so 0/ .E Q A ò  Thus, the charge on each plate is 

2 2 2 5 12 2 2 9
0 (1.0 10 m) (5.0 10 V/m)(8.85 10 C /N m ) 1.4 10 CQ R E           ò  

(c)  The conservation of energy equation is 

2 2 2 2
f f i i i f f i i f

1 1 2
( ) ( )(1000 V)

2 2
K qV K qV mv mv q V V v v e

m
            

                                               
19

7 2 6
i 31

2(1.60 10 C)(1000 V)
(2.0 10 m/s) 7.0 10 m/s

9.11 10 kg
v






     


 

P21.80.  Strategize:  We can use energy conservation for the first part. Once we have the initial speed we can use 
that to determine the kinetic energy at half that speed, and use energy conservation again for part (b). For the 
acceleration, we will use Newton’s 2nd law. 
Prepare:  As the electron moves toward the sphere, the only force acting on it is the Coulomb force, which is a 
conservative force. As a result, energy is conserved. At the point where the electron is stopped and reflected back, all 
its initial kinetic energy 2( /2)KE mv  has been converted into electric potential energy ( / ).U keQ r Once we know 

where the electron is momentarily stopped, we can find the electric field at this point, the force on the electron at this 
point, and finally, the electron’s acceleration at this point. 
Solve:   (a)  Knowing that energy is conserved, we can write that the total initial energy is equal to the total final 
energy: i i f f .K U K U    

Since the electron is fired from far away, its initial electric potential energy is zero. Since the electron moves toward 
the sphere until it is momentarily stopped, the final kinetic energy is zero. This is written as i f .KE U  



Electric Potential     21-7 

© Copyright 2019 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Inserting expressions for the kinetic end electric potential energy obtain 2 /2 / .mv keQ r   This may by solved for v to 

obtain 2 /( ) .v keQ rm  

Note that r in this expression is the radius of the sphere (1.25 mm) plus the distance the electron stops from the 
surface of the sphere (0.30 mm) or 1.55 mm.r   Inserting values obtain v. 

9 2 2 19 9 3 31 72(9.0 10 N m /C )(1.6 10 C)(4.5 10 C)/((1.55 10 m)(9 10 kg)) 9.6 10 m/sv              

(b)  When the speed of the electron is half its original value, its kinetic energy is one fourth its original value. This is 
because kinetic energy is proportional to the square of speed. Let us call the distance from the center of the charge to 
the electron at this half-original-speed point, .r  Since the total energy of the electron is equal to its initial kinetic 
energy, that is, total iE K  and since its kinetic energy at the point in question is 1 / 4  times its original value, we can 

use conservation of energy to say: 

total i i i f

1 3 3
( ) ( )

4 4 4
E K K U r U r K U        

Now using the formula for the potential energy we can solve for :r  

f

3 3 4 4(1.55 mm)
( ) 2.07 mm

4 4 3 3

keQ keQ r
U r U r

r r
       


 

When the electron has this distance from the center of the charge, its distance from the surface of the charge is 
2.07 mm 1.25 mm 0.82 mm.     

(c)  The magnitude of the electric field at the turning point may be obtained by 2/ .E kQ r  The force on the electron 

at the turning point is obtained by .F eE  Finally, the acceleration of the electron at its turnaround point is 
2 2/ / ( / )/ /( )a F m eE m e kQ r m keQ mr     

Inserting values 
9 2 2 19 9 31 3 2 18 2(9.0 10 N m /C )(1.6 10 C)(4.5 10 C)/((9.0 10 kg)(1.55 10 m) ) 3.0 10 m/sa              

Assess:  The electron is fired at the sphere with a speed that is about one third the speed of light. If the speed were 
much greater we would have to consider relativistic effects. The position where the electron has half the speed should 
be larger than the turnaround point, and it is four times larger. Finally, the acceleration is very large, but this is 
acceptable since the mass of the electron is so small.  
 

P21.81.  Strategize:  We can use energy conservation to equate the magnitude of the change in electric potential 
energy to that of the kinetic energy. Then we can solve for the unknown initial speed. 
Prepare:  The proton is fired from a distance much greater than the nuclear diameter, so 1r    and i 0 J.U   Because 

the nucleus is so small, a proton that is even a few atoms away is, for all practical purposes, at infinity. As the proton 
approaches the nucleus, it is slowed by the repulsive electric force. At the end point, the proton has just reached the 
surface of the nucleus f( nuclear diameter)r   with f 0 m/s.v   (The proton won’t remain at this point but will be 

pushed back out again, but the subsequent motion is not part of this problem.) Initially, the proton has kinetic energy but 
no potential energy. At the point of closest approach, where f 0 m/s,v   the proton has potential energy but no kinetic 

energy. Energy is conserved. Because the iron nucleus is very large compared to the proton, we will assume that the 
nucleus does not move (no recoil) and that the proton is essentially a point particle with no diameter. 
 

 
 

Solve:   Because energy is conserved, f f i i.K U K U    This equation is 
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where fr  is half the nuclear diameter. The initial speed of the proton is 

19 19 9 2 2
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Assess:  Extremely large deceleration of the proton occurs as the proton is brought to rest momentarily. 

P21.82.  Strategize:  In both cases, the electric field strength is related to the rate at which the potential is changing 
over distance. 
Prepare: We will use Equation 21.17. 
Solve:   The contours are uniformly spaced along the y-axis above and below the origin. Point 1 is in the center of a 
50 V change (25 V to 75 V) over a distance of 2 cm, so the magnitude of the electric field using Equation 21.17 is 

/ is (50 V)/(2 cm) 25 V/cm E V d    or 2500 V/m. Point 2 has the same potential difference in half the distance. 

Thus the magnitude of the electric field at point 2 is 5000 V/m. 
The magnitudes of the electric fields at points 1 and 2 are 2500 V/m and 5000 V/m. The directions of the electric 
fields are downward at point 1 and upward at point 2, that is, from the higher potential to the lower potential.  
That is, 

1 2(2500 V/m, down) (5000 V/m, up)E E 
 

 

 


