CHAPTER 21 - ELECTRIC FORCES DUE TO MULTIPLE CHARGES

EXAMPLE PROBLEM Principle of Superposition

Taking the location of the negative charge as the origin, which location along the positive x axis is the total electric force on a test charge $+q$ zero? The charges are $-3 \mu C$ and $+1 \mu C$ separated by 0.3 mm .

$$
\vdots \quad \vec{r}_{(+Q)}
$$

$$
\begin{aligned}
& \left|\vec{r}_{(+Q)}\right|=(x-d) \\
& \left|\vec{r}_{(-Q)}\right|=x
\end{aligned}
$$

CHAPTER 21 - ELECTRIC FORCES DUE TO MULTIPLE CHARGES

MAGNITUDE OF ELECTRIC FORCE Principle of Superposition

Strategy:

1. Draw the electric force at the observation location due
 to each charge
2. Determine the vector components of the total electric force, using the diagram as a guide

$$
\vec{F}=|\vec{F}| \hat{F} \quad \vec{F}_{n e t}=\vec{F}_{-Q}+\vec{F}_{+Q}=\left|\vec{F}_{-Q}\right|(-\hat{i})+\left|\vec{F}_{+Q}\right|(+\hat{j})
$$

$$
\vec{F}_{n e t}=-\frac{k Q_{-} q}{r_{-}^{2}} \hat{i}+\frac{k Q_{+} q}{r_{+}^{2}} \hat{j}
$$

3. Determine the magnitude and direction of the net electric force
$\left|\vec{F}_{n e t}\right|=\sqrt{\left(\frac{k Q_{-} q}{r_{-}^{2}}\right)^{2}+\left(\frac{k Q_{+} q}{r_{+}^{2}}\right)^{2}} \theta=\tan ^{-1}\left(\frac{F_{\text {net,y}}}{F_{\text {net,x }}}\right) \quad \begin{aligned} & \text { clockwise } \\ & \text { from -x axis }\end{aligned} \vec{F}_{\text {net, },}^{\vec{F}_{n e t, x}}$

CHAPTER 21 - ELECTRIC FORCES

Superposition Numerical Example Problem

A dipole consisting of two charges, $q 1=-6.2 \mu \mathrm{C}$ and $q 2=+6.2 \mu \mathrm{C}$ are separated by 0.6 mm . A proton is placed at location P. What is the magnitude and direction of the net electric force on the proton?

CHAPTER 21 - ELECTRIC FORCES AND NEUTRAL MATTER

Neutral Matter Conductors and Insulators
Conductors - Charge carriers free to move. Excess charge resides on surface.

Insulators - Polarization of atoms induces a temporary dipole. Excess charge is immobile.

Neutral Conductor

CHAPTER 21 - ELECTRIC FORCES AND NEUTRAL MATTER

Neutral Matter Conductors and Insulators
Conductors - Charge carriers free to move. Excess charge resides on surface.

Insulators - Polarization of atoms induces a temporary dipole. Excess charge is immobile.

Neutral Insulator

CHAPTER 21 - ELECTRIC FORCES

Shell Theory

Theorem 1. Charged particles outside of a shell, with a uniform charge distribution on its surface, is attracted or repelled as if the shell's charge were concentrated at its center.

CHAPTER 21 - ELECTRIC FORCES

Shell Theory

Theorem 1. Charged particles outside of a shell, with a uniform charge distribution on its surface, is attracted or repelled as if the shell's charge were concentrated at its center.

$$
\vec{F}_{e l}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{|\vec{r}|^{2}} \hat{r}
$$

$$
\begin{gathered}
+ \\
+Q
\end{gathered}
$$

CHAPTER 21 - ELECTRIC FORCES

Shell Theory

Theorem 1. Charged particles outside of a shell, with a uniform charge distribution on its surface, is attracted or repelled as if the shell's charge were concentrated at its center.

Theorem 2. A charged particle inside a shell with a charge uniformly distributed over its surface as no net force acting on it due to the shell.

$$
\vec{F}_{e l}=\overrightarrow{0}
$$

CHAPTER 21 - ELECTRIC FORCES

Example Problem

Two small positively charged spheres have a combined charge of $25.0 \mathrm{E}-5 \mathrm{C}$. If each sphere is repelled from the other by an electrostatic force of 1.0 N when the spheres are 1.6 m apart, what is the charge on the sphere with the smaller charge?

CHAPTER 21 - ELECTRIC FORCES

Example Problem

In a spherical metal shell of radius R, an electron is shot from the center directly towards a tiny hole in the shell, through which it escapes. The shell is negatively charged with a surface charge density of $6.9 \mathrm{E}-13 \mathrm{C} / \mathrm{m}^{2}$. What is the electron's acceleration after traveling a distance of $r=0.5 \mathrm{R}$, and $\mathrm{r}=2.0 \mathrm{R}$?

